Winnable Spider Solitaire Games



A program named plspider has played a number of games of standard Spider Solitaire.

plspider wins a typical game of Spider in around 15 minutes of play (including losing games before finally winning), often floundering comically with baffling moves when the game is all but won. Perhaps surprisingly, plspider was not developed under a cost-plus defense contract.

Some of the results of plspider's play are listed below.

Inside plspider.zip are:


Installation

On a Debian/Ubuntu/etc. PC:
cd      a_directory_of_your_choice
unzip   wherever_you_put_the_zip_file/plspider.zip
cd      plspider_source

plspider    -c              # run the program forever (H or control C to quit)

cd  src                     # or switch to the plspider_source/src sub-directory
m                           # and compile the C program to plspider_source/src/plspider

Run the program

plspider    -h              # tells you command line options

plspider    -c              # plays forever random unplayed games, or lost games (interspered with occasional random won games)
plspider    -a -e -s 1234   # plays game number 1234

The program appends play results to plspider_cshd.txt or, if the command line includes the -w option, winspidr_cdhs.txt, at the end of its play. The program reads one of these files at start-time to aid in choosing random games to play.


Glossary

Game Number:

The game number is a number that you may specify to the PySol program (Windows Version) to choose a specific deal of the cards to play.

In fact, the game number corresponds to the arrangements of the shuffled cards and to their order when dealt by the logic in the classic Windows FreeCell game. (Better FreeCell program: Freecell Pro )

plspider does not play the special game numbers -1 and -2, nor does it play the modern Window Free Cell games numbers between 32001 and 1,000,000.

Note: plspider plays Spider, not Free Cell. "game numbers" refer to the arrangements of the shuffled cards and to their order when dealt.

Below, the game number of un-won games may be followed by a number indicating the maximum number of empty stacks plspider has been able to achieve. Until the last 10-card flop, plspider is very eager to create empty stacks. On the last 10-card flop, moving cards out of play takes highest precedence.

Moves:

The least number of moves that plspider has used to win the game.

... Or the most moves plspider has been able to make at any time in a losing game.

Note: The program also reports losing games' movements that get the game to the situation with the highest evaluation score of all situations found with at least one empty stack.

In won games, plspider's moves are stripped of much redundant movement.

Full-Run and Split-Run moves:

Full-run moves are moves when a complete same-suit run of cards is moved to another stack.
Split-run moves are moves when part of a same-suit run of cards is moved - the same-suit run is broken.

Split-run moves are not very commonly used, but seem necessary on occasion. And they can drastically increase the number of moves a dumb program needs to consider for each move it makes.

Flop:

Refers to when 10 cards are dealt from the deck, a card to each of the play stacks.

Time:

The shortest (won games) or longest (lost games) play-times in hours:minutes:seconds.

Committed Moves:

A "committed move" is a move that cannot be undone by legally moving the cards back to how they were before the move.

For example, a flop is a committed move. Moving a King to an empty stack from a non-empty stack is another example. Any move that flips (reveals) a card is another example. Moving a full suit up and out of play is another example. And, moving card(s) off a stack that contains an exposed card not one higher than the bottom moved card is another example.


Note:

Game number 14934p appears to be unwinnable. It looks like this (printout from showdeal.py):


    Game number 14934

      1    2    3    4    5    6    7    8    9   10

    10S   2H   4S   QD   3D  10D   9H   AS   JS   JD
     3C   4H   3H   QH   8C  10H   3D   4D   8H   AH
     KS   KC  10C   7C   8S   3S   7D   3S   6C   5C
     4C   3H   4D   7S   2S   3C   5C   8C   QC   5S
     JH  ---  ---   QC  ---  ---   QS  ---  ---   KS
    ---   KH   2H  ---   JH   6H  ---   2C   KD  ---
     5S             2D             6H             5D

      1    2    3    4    5    6    7    8    9   10

     6D   AH  10H   9S   9C   6C   AC   6S   9D   4C
     5D   9H   6D   8D   9C   KD   AS  10D   QH   JS
     JC   4H   2S   6S   7H  10C   KH   8D   8H   AD
     5H   2C   2D   4S   8S   AC  10S   7H   5H   7C
     9D   KC   AD   QD   JC   JD   7S   7D   9S   QS

    
The visible cards after the initial deal are the 5 of spades, king of hearts, etc.
The row of cards starting with the 6 of diamonds are the first cards dealt from the stock.
The row of cards beginning with the 9 of diamonds are the last 10 cards to be dealt.

First, remember this:

If the first 10 cards showing are, say, of only two card-values (e.g. all 6's and 8's), and all 16 cards that those two cards go on top of are underneath (e.g. all the 7's and 9's have been dealt face down), then the game is unwinnable, no matter what the distribution of the rest of the cards.

A special case of this unwinnable game is when one of the two card-values are a king. In that case, only the 8 cards that the other card-value may be played on must be hidden for the game to be unwinnable.

A further variant of this type of game allows the 10 cards to be anywhere in the deal, so long as the cards they play on are in unexposable positions underneath them.

So, examine game 14934, as shown above:

Notice the positions of the 3's, 2's, kings, and 6's. All stacks but the 6th and 7th have kings or 2's in them. So the stacks other than the 6th and 7th cannot be emptied unless another stack is empty (to move a king to), or unless a 3 is exposed (to move a 2 to).

Simplified, that means that, unless 3's are available for the 2's to be played on, only the 6th and 7th stacks can be emptied. (And, without an empty stack, nothing can be done but play a whole suit built up on a king ... which won't happen if a 2 cannot be played on the king's stack.)

But the only 3's available to be played on are on the 6th and 7th stacks. Unfortunately, all of these 3's are hidden by 6's ... which cannot be moved before they are covered by flopped kings ... which cannot be moved because there are no empty stacks to move them to.


And:


    Game number 1748p

      1    2    3    4    5    6    7    8    9   10

     AH   3D   4S   5H   6H   6H   8H   6C   6S   8C
     6D   2C  10C   5D   6C   6D   7D   KC   3C   QC
     2H   QD   5S   7D   QS   3D   2C   5S   8S   7H
     QH   KD   8D  10S   7C   5H   3S  10D   5D   5C
     KS  ---  ---   3H  ---  ---   6S  ---  ---  10C
    ---   QC   4H  ---   KS   QH  ---  10D   KD  ---
     9H             AD             KH             8S

      1    2    3    4    5    6    7    8    9   10

    10H   7H   5C   QS   8C   9H   JD  10H   9S   KC
     QD   9C   4C   4H   AH   3H   8H   AS   JS   KH
     9D   4C   JD   AS   JH   2H   4S   7S   2D   4D
     2S   9S   4D   AD   AC   JH   JC   8D   9C   7S
     JC   2S   JS   3S   9D   3C   AC   7C   2D  10S

    
Examine the 6's and 5's. Players will have a hard time moving 5's in this game. And all stacks have 5's or kings. All 6's are hidden behind those kings and a 5 (stack 6). 5's or kings block all the other, non-6/king stacks (3, 4, and 10) from being emptied.

Game 1748 appears unwinnable, too.


How many games are like these? That is, games that simply don't go anywhere.

Recent (April 8, 2005) versions of plspider print out whether plspider ever emptied a stack or not.

As of May 1, 2005, there are 4 games that plspider has not emptied a stack on. Games 14934 and 1748 appear to the eye to be unwinnable. Game 10957 also appeared unwinnable, but Mark Stierlin won it in 2020.

Figuring that there exist unwinnable games that a stack can be emptied in, my guess of the unwinnable rate of Spider games is now somewhere around 1 in 3000. The bounds for this guess are given by plspider's current (May 1, 2005) results: that is, there must be more than 1 in 16000 games (though 2 unwinnable games isn't a high enough number to imply that this ratio is accurate), and fewer than 1 in 500.

November 2, 2014

Things have changed. It looks more like there are only 3 unwinnable games out of the 32,000. Two other un-won games, 12177 and 24560 have the makings of being winnable.

Max Schamschula is finding convoluted means to solve games that are unquestionably hard to solve. plspider's has been recompiled with settings tuned more toward looking deep in the move tree of un-won games rather than being quick to find solutions to "normal" games. So, time will tell.

Anyway, it appears 1 in 10,000 is closer to the frequency of un-winnable, random Spider games than 1 in 3000.



Updates


October 21, 2014

Maximilian Schamschula has solved 8881, 20830, and 24614. Herculean effort.

Insprired by Max, with some settings changes, plspider has solved 288, 6654, 8881, and 27320.

And, Max, with the aid of a sequence from plspider setting up 4 empty columns, won game 19638.


October 22, 2014

Max has solved 14686.


October 23, 2014

Max has solved 16749 and plspider has won 19638 by itself.


October 24, 2014

Max has solved 12057.

plspider has solved 28241.


October 26, 2014

plspider has solved 25521 and 12057.


October 31, 2014

plspider has solved 24614.


November 1, 2014

Max solved 14992 and plspider solved 16749 and 20830.


November 2, 2014

Max solved 28023.


November 3, 2014

Max solved 24560.


November 4, 2014

plspider solved 12177.


May 1, 2020

Mark Stierlin solved 10957.


May 10, 2020

Able to shuffle and deal all WINSPIDR (by John A. Junod) games. (But restricted to playing games numbered below a million until after April 13th 2024.)


October 7, 2024

Challange: WinSpidr games 1..65000 not yet won

plspider has solved almost all WinSpidr games from 1 though 65000. These games remain unsolved:


    WinSpidr game number 1295w

      1    2    3    4    5    6    7    8    9   10

     5D   2D   3C   4H   AC   6C   7C   9H   6H   AH
     6D   JC   2S   5C   6S   4D  10H  10C   6D   6H
     QD   7S   AS   9D   2H   5S   6S   4C   8D   6C
     3H   JS   8C   9S   AC   2C   8S   9C   8H   5H
     KS  ---  ---   9S  ---  ---   4S  ---  ---   7C
    ---  10S   2H  ---   4D  10H  ---   KH   KC  ---
     QH             2D             5C             AH

      1    2    3    4    5    6    7    8    9   10

     4H   4C   8D   KH   KD   QS   5S   KS   7D   2C
     7H   KD   3D   7S   8H   3D  10D   AS   3H   7D
     9D   JC   8C  10S   JD   3S   QD   9H   QH   QS
     JS   4S   AD   JH   5D   QC   QC   JD   3C   KC
     AD   9C  10D  10C   5H   JH   7H   3S   2S   8S

Example unoptimized moves to 1 empty stack:Lost  1295   3:42   222 seconds    0 keys   97 moves  1 empties V0.85  Mon, 09 Sep 2024 13:32:11 GMT
5#1>7 1#1>8 5#1>4 10#1>5 D D D 1#1>4 3#1>4 1#1>4 3#1>1 3#1>8 3#1>1 D 1#1>7 3#1>1 7#1>6 4#1>7 D 9#1>8 3#1>6 2#1>4 7#1>10 6#1>7 3#1>4 3#1>8 3#1>9 3#1>2


    WinSpidr game number 8231w

      1    2    3    4    5    6    7    8    9   10

    10S   5H   6H   AH   QH   3H   7C   3S  10S   2C
    10H   2H   6H  10C   QD   6C   9D   JC   8S   JC
     JS   QC   4D   QH   5S   5D   3H   5D   8C   5C
     QS   JS   4S   AD   9C   3C   3S   KC   JD   2D
    10C  ---  ---   9C  ---  ---   8H  ---  ---   4C
    ---   KH   7S  ---   AH   5S  ---   AC   2S  ---
     9S             4S             2D             9S

      1    2    3    4    5    6    7    8    9   10

     2C   KS   QD   KC   KD   2H   8S   KH   2S   7D
     JH   5H   8D   4D   8D   7D   7H   JH   KD   KS
     8C  10D   6D   6S   AD   QS   3C   AC   QC  10D
     AS   8H   4C   3D   7C   AS   5C   JD   7H  10H
     4H   6S   3D   9D   9H   6D   6C   7S   4H   9H

Example unoptimized moves to 2 empty stacks:Lost  8231   0:00     0 seconds    0 keys  116 moves  2 empties V0.86  Tue, 10 Sep 2024 21:26:10 GMT
5#1>7 4#1>6 7#1>9 D 3#1>5 3#1>7 D 6#1>3 4#1>2 7#1>5 D D D 7#1>8 3#1>9 7#1>8 3#1>8 9#1>8 7#1>1 2#1>7 7#3>4 7#1>8 7#1>10 3#3>5 7#1>3 7#1>9 5#3>7 4#3>5 2#1>4 7#4>2 7#1>10 10#1>4 2#5>7 8#2>2 8#3>4 1#1>4 8#1>10 7#5>8 6#1>10 2#3>7 6#1>7 2#1>8 6#1>2 9#2>8 6#1>4 6#2>10 6#1>10 6#1>5 7#1>4 6#1>9 6#1>1 7#3>5


    WinSpidr game number 36156w

      1    2    3    4    5    6    7    8    9   10

     6C   2C   JD   9H   6C   8H   2S   AC  10S   8C
     AD   8S   3S   JC  10D  10H   KD   3H   6D  10S
     5S   2H   5H   QS   2H   3C   QC   7D   7S   QD
     8C   7H   JC   3C   2D   7C   QS   9C  10C   7D
     KS  ---  ---   5C  ---  ---   QH  ---  ---   3D
    ---   KH   6S  ---   KD   6D  ---   9S   6H  ---
     6H             4S             8D             AS

      1    2    3    4    5    6    7    8    9   10

     9C   QC   AH   5D   5D   KS   3H   6S   8S   JH
     KC   5H   AD   JS   9D   3D   QD   4S   KH   AC
     7S   7C   4D   4C   4D   3S   9S   JS   2C   9H
     JD  10H   8H   JH   5S   5C   4C   9D   4H   AS
     QH   7H   4H   2S   KC  10C   AH   2D   8D  10D

Example unoptimized moves to 3 empty stacks:Lost 36156  21:32  1292 seconds    0 keys  460 moves  3 empties V0.87  Fri, 20 Sep 2024 00:11:04 GMT
7#1>8 7#1>2 7#1>5 D D 7#1>1 8#1>2 4#1>1 4#1>8 4#1>8 2#1>4 7#1>8 7#1>9 1#1>9 1#1>7 9#1>7 D 6#1>5 6#1>3 9#1>3 9#1>6 8#1>6 8#1>4 5#1>8 D 2#1>1 7#1>6 8#1>1 3#1>7 8#2>5 2#1>7 3#1>5 3#2>8 3#1>5 D 1#1>5 2#1>9 3#1>2 3#1>4 8#4>3 8#1>9 8#1>1 8#1>6 1#2>10 8#1>1 8#1>10 9#1>10 8#1>2 3#4>10 4#1>10 8#1>4 9#1>8 9#1>6 8#1>6 3#1>6 3#1>5 9#1>3 3#2>6 9#1>8 3#1>6 9#1>1 2#3>9 5#1>2 5#1>8 3#1>8 10#1>3 4#1>10 4#1>6 10#1>6 3#1>10 9#4>3 9#1>2 2#3>5 3#4>9 6#1>3 10#1>6 3#1>10 9#4>3 9#1>1 3#4>1 2#2>3 9#1>2 4#1>3 9#1>3 6#1>9 10#1>6 9#1>10 1#4>9 2#1>1 9#4>2 2#5>9 10#1>2 2#2>9 10#4>1 9#7>2 10#1>9 1#5>10 10#9>8 9#1>1 10#1>8 2#7>9 1#3>10 1#1>5 10#3>5 10#1>1 5#3>1 2#1>5 2#1>4 8#1>4 3#1>2 7#1>8 7#1>5 9#7>7 7#8>9 1#3>7 1#2>3 9#8>3 3C 2#1>1 6#1>2 2#1>6

Note: number of "moves" reflects the most moves made at any time, not the number of listed moves (which lead to empty stacks).


March 10, 2025

Challange: normal games 32001..65000 not yet won

plspider has solved almost all normal games from 32001 though 65000. These games remain unsolved:


Game number 51487p

  1    2    3    4    5    6    7    8    9   10

 5S  10C   AH   KC   8S   2S   KH   2C   QC   7H
 JD   6H   5D   9H   3C   8S   4D  10D   7C   7D
 8D   QS   9C   2H   QS   3H   9H   KS   4D   3D
 AD   2S  10D   3D   5C   5D   AS   3S   QC   3C
 6H  ---  ---   8H  ---  ---   8C  ---  ---   8D
---   8H  10H  ---   7S   5S  ---   2D  10H  ---
 6D             KD            10C             5H

  1    2    3    4    5    6    7    8    9   10

 7D   KC   7C   5H   2D   KD   KS   JC   2H   AS
 JH   JC   9C   4H   5C   9S   JD   KH   AH   7S
 4C   JH   4S   AC   9S   2C   6C   6D   6S   9D
 QD   QH   9D   AC   4C   4S   QH   6C   8C   7H
 6S   AD   3H   3S  10S  10S   4H   QD   JS   JS


Example moves to 1 empty stack:Full 51487   0:10    10 seconds    0 keys  900 moves  1 empties V0.89  Thu, 06 Mar 2025 10:06:35 GMT
 5#1>2 1#1>2 5#1>2 10#1>1 5#1>4 8#1>5 5#1>8 D 10#1>9 1#1>10 1#2>3 1#1>5 10#1>1 3#2>1 3#1>10 1#2>10 3#1>8 D 4#1>5 D 4#1>6 4#1>7 1#1>7 1#1>4 1#2>10 D 9#1>3 10#1>3 8#1>10 8#1>3 1#1>8 1#1>8 1#1>9 2#1>1 6#1>9 2#1>1 2#1>7 1#2>2 2#1>1 7#1>2 1#1>7 3#1>1 10#1>3 1#1>10 2#1>1 7#1>2 1#1>7 2#2>1 8#2>2 1#2>8 2#1>1 1#1>2

Note: number of "moves" reflects the most moves made at any time, not the number of listed moves (which lead to empty stacks).



Results for plSpider Games

GreenWon
GrayHuman-won
OrangeLost
RedLost with no empty stacks made.

Shortest GamesMoves   LongestMoves   FastestTime   SlowestTime   Shortest LossesMoves   Slowest LossesTime   Most PlayedPlays
23181168   6204657   341860:01   4764916:36:54   1748:0183   14934:024:31:04   5148726994
14900170   14388654   361480:01   3972314:50:11   14934:0240   1748:040:24   1493419948
693172   12870629   644900:01   5774514:05:15   51487:1104   51487:10:46   174819772
25360173   15699602   329390:02   347487:57:41       4239318908
718176   10746585   341700:02   573707:02:47       601679102
19167176   27006578   344590:02   499366:58:00       570093615
28226176   4370576   347210:02   322516:55:40       109572072
45633176   2646567   359230:02   464326:34:43       449601879
13492177   31559566   361920:02   386846:16:36       393931849
5425178   18862560   362220:02   330116:11:17       440961820
25462178   29924560   384430:02   389495:40:25       432371361
27959178   7418559   387590:02   544365:07:54       410531161
34302178   1503555   395990:02   402574:51:21       45665958
63944178   22362551   401240:02   622424:38:46       38512849
42364181   4757550   406490:02   515494:21:33       54102775
34427182   7394548   410630:02   551174:15:44       45844749
35089182   23431548   411680:02   492694:09:33       62205605
15993183   30730547   414150:02   649514:04:38       58084593
18992183   6300544   422030:02   399464:02:29       34465488
26906183   15726544   422920:02   412004:02:25       48794483
30152183   404543   430470:02   146863:59:54       57509471
44489183   15249541   434200:02   519713:42:29       49641430
46271183   22519541   434750:02   245603:39:42       56758343
3899184   12331538   435300:02   393263:37:59       32103306
7435184   11667536   476990:02   368203:36:47       42849298
20578184   13599536   478970:02   619183:30:55       45558283
56339184   15715534   486040:02   320173:22:26       47732279
61904184   6336531   487050:02   340643:15:25       12177264
14398185   17391531   494070:02   520623:14:49       48210249
19752185   8661530   529190:02   574443:13:31       64499245
21585185   26330530   532550:02   502223:12:51       39612241
25457185   4036528   536770:02   379873:08:39       39653240
37780185   7945524   542630:02   620473:05:44       56012238
39298185   7226522   551810:02   597152:59:53       64168236
58872185   7390522   552240:02   632782:59:00       54114233
11533186   15192522   555600:02   575702:58:55       24560227
13865186   8455521   564470:02   454182:55:20       56626219
23943186   25588521   569710:02   557112:54:21       28023216
24127186   16252518   572560:02   565632:51:15       24614214
27976186   29012518   586420:02   370202:50:16       288211
59115186   11124517   599410:02   636342:50:11       14686209
1527187   24909517   619040:02   381572:49:40       63639202
5361187   17842516   621440:02   342572:48:12       20830201
5437187   1247515   622850:02   614882:46:52       40806199
8224187   12301515   320520:03   109572:46:39       53569195
16271187   10279514   333680:03   385742:46:07       14992194
27347187   11522513   334580:03   445272:45:18       58594189
28097187   28061513   338730:03   408282:45:02       46343188
34049187   11971512   339120:03   459742:44:15       49426182
35116187   28995512   339150:03   410322:43:10       16749180
47103187   2504511   340870:03   511212:42:14       43968180
47672187   25432511   341310:03   453232:40:59       44663171
55689187   1406510   342520:03   508222:40:57       28241158
2597188   3723509   344320:03   649242:40:14       35204157
6264188   3129508   347960:03   208302:39:00       42578155
8100188   4718508   350930:03   643012:38:25       47304154
23005188   7003508   351700:03   246142:37:12       51548149
29884188   20066508   353810:03   461972:36:19       55447146
38707188   30736507   355480:03   475402:36:11       33316140
40408188   10527506   355580:03   390592:34:56       48525138
44344188   18732506   363960:03   264662:34:11       37359137
46237188   20922506   369100:03   482242:33:49       25521133
49823188   30977505   371210:03   347512:33:38       32744133
59539188   18838504   371550:03   510042:27:46       36226133
3870189   12569503   375860:03   353922:27:45       45618133
9036189   14434503   392130:03   547862:27:45       52022133
9987189   25527503   392580:03   487612:27:22       42508128
17658189   26931503   402650:03   606002:26:39       43456126
20435189   28245503   402810:03   607412:26:23       19638125
26228189   1768502   405500:03   347792:25:19       34186125
30749189   3520502   405510:03   634262:23:14       53491125
34842189   7284502   406710:03   523122:22:18       58398125
42453189   29170502   411240:03   370252:22:00       60327125
45157189   6741501   412410:03   169302:21:46       37495124
45844189   7146501   417270:03   88812:19:49       36342121
46024189   7276501   420250:03   526532:19:45       12057120
50075189   11228501   420710:03   453602:17:48       35888120
64747189   13585500   425610:03   350442:16:49       40340115
4072190   21998500   426300:03   558962:15:11       60740114
8064190   21712499   428710:03   594312:11:03       61346114
10094190   14124498   432540:03   81382:09:42       33483112
10816190   20303497   434950:03   403772:09:20       63469112
13999190   23201497   439110:03   438112:09:18       53499111
18286190   27755497   439900:03   470532:07:59       41256110
20392190   31175496   441540:03   475032:07:58       43220110
22081190   24763495   442450:03   620852:06:16       60300110
27937190   24053494   443380:03   619932:04:30       48518107
36214190   2650492   445980:03   431502:03:48       51507107
36361190   6057492   447690:03   495912:02:49       52938103
39454190   12421492   450650:03   570372:02:25       32724100
41804190   14455492   450760:03   627982:01:18       47234100
57166190   28359492   453930:03   393562:00:35       2732098
58767190   1083491   455500:03   167491:59:13       6120998
61316190   19095491   456790:03   631711:58:28       3556496
2144191   6951490   462240:03   353511:56:49       5511896
7395191   22357490   462680:03   594771:56:31       665494
7483191   7910489   464880:03   420411:56:28       4192193
15186191   13373489   465860:03   624421:56:27       3477991
16301191   25795489   466230:03   364781:56:15       4146291
17869191   36547489   467150:03   386091:55:58       4396691
 242926 games played
  65000 unique game/deals played.
  64997 ---  99.995% of unique games have been won. 3 remain un-won. Most recent won: ['42393:2025-03-10 03:06:50-07:00', '60167:2025-03-09 02:31:43-07:00', '57009:2025-03-08 16:34:43-07:00']
 Average  won-game, number of moves: 267 in     3:44
  Median:                            261 in     1:26
 Average lost-game, number of moves: 175 in  8:24:05
  Median:                            183 in    40:24
 Average time spent to win a game:              9:27
  Median:                                       1:34
 Average possible full-run  moves per move:       12
  Median:                                         11
 Average possible split-run moves per move:       14
  Median:                                         10
 Split run moves made in 45815 ( 61%) of 75154 won games.



Results for WinSpidr Games

GreenWon
GrayHuman-won
OrangeLost
RedLost with no empty stacks made.

Shortest GamesMoves   LongestMoves   FastestTime   SlowestTime   Shortest LossesMoves   Slowest LossesTime   Most PlayedPlays
2534169   26978542   255560:01   5960522:09:55   8231:2169   1295:13:00:10   3615622630
49275178   12542510   338490:01   6240019:55:49   1295:1194   8231:22:33:06   823121563
64175179   30668499   560850:01   3431018:39:07   36156:3296   36156:31:28:24   129519969
33036181   26798478   49780:02   3840118:11:30       2432318224
58994181   17974474   51860:02   3648713:25:14       925918077
9635182   28256472   193420:02   920212:07:03       4335917257
45484182   5159470   195820:02   6223911:56:58       5583916375
27894183   25418470   333140:02   4426611:20:57       3609213823
29839183   13221467   346150:02   3600510:49:12       6164313213
43865184   20138467   358690:02   3946710:24:16       526549928
44478184   13219466   398210:02   536839:50:50       451778478
18768185   16610464   412430:02   382159:43:53       333677762
29622186   169462   440910:02   536349:15:00       629357040
12301187   9033460   466830:02   315629:14:22       490746978
30020187   9605460   498280:02   454639:05:48       460806962
37033187   13402460   524270:02   465398:56:55       519876918
37751187   24423460   533890:02   555228:42:27       559176704
51107187   7009454   534780:02   578118:29:55       363466666
59428187   19347453   559120:02   73898:25:40       492276641
44005188   20413450   17399442710:02   431638:24:59       632095751
44979188   22738450   83730:03   523228:18:46       597475247
49097188   59605445   88450:03   540798:04:43       480194388
62926188   16854442   124830:03   584777:57:35       630384077
12586189   27990442   199920:03   546607:39:31       392343957
13908189   2990441   205120:03   378217:36:31       446632991
922190   5254437   221400:03   364677:35:46       649642104
6922190   16259437   229540:03   633537:29:50       443671981
8798190   1786436   239860:03   42367:14:17       557611960
31337190   15355436   267520:03   455937:11:12       434821940
34615190   27610436   285180:03   540927:05:59       514021716
38049190   12796435   312950:03   474317:03:44       573891658
38459190   28401435   324780:03   160776:59:34       649431205
38852190   23399434   349230:03   367666:57:46       648821181
42105190   39602434   354470:03   575406:52:21       645701166
46318190   15729433   367170:03   414836:50:21       646601166
50008190   7830432   371390:03   359506:48:24       641531138
52979190   16653432   383980:03   594216:45:20       646781091
4784191   19733431   434120:03   536876:30:26       369701064
14627191   44382431   437010:03   384496:25:10       330881022
18037191   3623430   468260:03   419056:23:39       560851017
24875191   36630430   485920:03   582946:20:29       43758981
33344191   14332429   486470:03   453756:15:22       41746946
39718191   21469429   490720:03   194386:04:01       64968916
40546191   24683429   499480:03   378726:01:30       59976864
42509191   6123428   508170:03   500705:58:56       9202848
59302191   20691428   537320:03   457315:56:08       63867782
7501192   16130427   560640:03   17358797945:50:34       33578772
29632192   2989425   579020:03   532395:45:09       16433755
33997192   4924425   580890:03   592135:44:35       47319722
37421192   44266425   597470:03   548755:44:10       38525692
39885192   11837424   599750:03   463085:40:45       35624682
40800192   16832424   609430:03   499225:38:33       32251670
53118192   21622422   617150:03   364125:37:26       50766670
54216192   27235422   625760:03   621125:35:06       59975663
55684192   28593422   638380:03   470645:34:51       37231654
55814192   62400422   641250:03   568295:34:48       34382653
55880192   9307421   642710:03   517685:31:01       51508616
59330192   12360421   646220:03   520935:27:05       44220608
6365193   27813420   649100:03   581165:26:37       26843597
9098193   29848420   63750:04   436695:24:54       52663593
9215193   2569419   65480:04   487915:24:52       1880589
26600193   3200419   65710:04   349795:22:44       13449578
39877193   12997419   73980:04   327825:21:48       27764578
43881193   18370419   83630:04   475365:19:43       29871576
44392193   9368417   101010:04   355245:17:15       169573
49977193   22591417   111100:04   416545:16:20       26978569
50834193   28211417   137140:04   581395:13:42       752545
63391193   10094416   161210:04   621065:09:35       5918543
885194   1234415   171720:04   566715:08:46       16661536
7421194   1847414   210600:04   489395:04:24       7045524
41300194   6634414   214030:04   525835:04:07       17579523
49834194   22459414   227870:04   426155:00:32       30276519
52160194   31547414   234980:04   440544:59:54       18151516
59607194   4129413   235860:04   392354:58:24       11932511
61743194   9589413   243480:04   567574:57:36       29358507
62355194   17579413   251400:04   470824:57:19       14311505
2334195   18990413   260120:04   315824:55:09       64363501
3592195   58823413   280860:04   385644:55:07       28790497
5281195   760412   298810:04   327024:51:30       1552494
10107195   13948412   308760:04   403104:50:54       61121494
15817195   14712412   314350:04   401874:50:51       15281378
32913195   20811412   327550:04   328894:48:14       6500339
33204195   37841412   330850:04   605244:47:22       36812295
42253195   309411   335780:04   545534:40:49       64296291
48898195   3729411   341140:04   437434:40:08       40063285
53732195   22630411   352810:04   566034:39:52       37767274
54967195   26843411   354730:04   475274:36:51       36922263
61415195   33943411   361810:04   55224:35:59       40011260
1730349387195   6215410   369550:04   110424:35:59       53387247
21459196   7057410   369570:04   425684:35:06       58642245
27864196   8176410   369700:04   441334:34:35       42489244
32823196   13971410   373850:04   565494:34:21       23499241
32997196   14852410   380580:04   392254:33:31       47211214
37664196   28849410   382660:04   477184:30:42       11827208
42463196   9565409   390430:04   479834:30:16       61954206
42920196   16433409   393370:04   365254:27:52       49844204
47629196   24619409   403380:04   480104:27:10       39231203
52620196   29813409   406380:04   557544:25:57       12542199
54592196   31976409   422600:04   373574:21:39       8304198
59006196   54384409   426600:04   630874:21:02       5340196
 407513 games played
  65162 unique game/deals played.
  65159 ---  99.995% of unique games have been won. 3 remain un-won. Most recent won: ['1741326156:2025-03-07 02:14:01-07:00', '1740691770:2025-02-27 17:52:45-07:00', '1740612878:2025-02-26 20:37:21-07:00']
 Average  won-game, number of moves: 275 in     9:49
  Median:                            273 in     3:08
 Average lost-game, number of moves: 219 in  2:20:33
  Median:                            194 in  2:33:06
 Average time spent to win a game:             16:13
  Median:                                       3:41
 Average possible full-run  moves per move:       12
  Median:                                         11
 Average possible split-run moves per move:       13
  Median:                                         10
 Split run moves made in 62604 ( 86%) of 72743 won games.



plspider.htm
Tue Mar 11 19:09:07 2025
plspider at tranzoa dot com
Copyright (C) 2024 Tranzoa, Co. This plspider.htm file is generated by webresults.py from results files, plspider_cshd.txt and winspidr_cdhs.txt.